国产在线精品网址你懂的,欧洲成人全免费视频网站,中文字幕日产无码,亚洲国产精品久久久久婷婷软件

EN CN
close
High-Torque Oldham Coupling-A Systematic Study & Engineering Application Analysis
Release date:09 16,2025      Views:

1. Introduction

The Oldham coupling, as a flexible coupling with excellent deviation compensation capability, plays a crucial role in industrial transmission systems. Its unique three-component structure (two hubs with sliding grooves and one intermediate slider) effectively compensates for radial, angular, and axial deviations while maintaining constant speed transmission. With the development of modern industrial equipment toward high-speed, high-precision, and high-reliability directions, higher requirements are being placed on coupling performance.

 

The shaft-hub connection, as a critical link in torque transmission, directly affects the performance of the entire transmission system. Set screw fixation and clamp type fixation, as two main mechanical fixation methods, have their respective application areas and advantages in engineering practice. Set screw fixation generates frictional force through point contact between the screw tip and the shaft surface to transmit torque, offering advantages of simple structure and low cost. Clamp type fixation achieves full-circumference friction connection through uniform radial pressure, providing higher reliability and longer service life.

 

This paper systematically studies the application characteristics of these two fixation methods in high-torque Oldham couplings from multiple perspectives including transmission dynamics, materials science, and reliability engineering. Through a combination of theoretical analysis, numerical simulation, and experimental verification, key issues such as stress distribution patterns, fatigue failure mechanisms, and service life prediction under different fixation methods are thoroughly investigated, providing scientific theoretical basis and practical guidance for engineering design.

 

2. Structure and Working Principle

2.1 Basic Structure of Oldham Coupling

The high-torque Oldham coupling adopts an optimized three-component structure:

Hub Components:

Material: 42CrMo4 high-strength alloy steel

Heat treatment: Quenching and tempering to HRC28-32

Surface treatment: Phosphating or nickel plating to improve wear resistance

Groove design: Involute profile to reduce contact stress

 

Intermediate Slider:

Material selection:

MC nylon: Suitable for general working conditions

POM polyoxymethylene: Suitable for high wear resistance requirements

Copper-based composites: Suitable for high-temperature conditions

Self-lubricating design: Embedded solid lubricant to reduce maintenance needs

 

Fixation System:

Set screw type: Uses grade 12.9 high-strength hex socket screws

Clamp type: Uses special clamping sleeves and high-strength bolts

 

2.2 Torque Transmission Mechanism

The torque transmission capacity of the Oldham coupling can be described by the following model:

T=μ?P?R?N?η

 

Where:

$\mu$: Friction coefficient (0.12-0.18)

$P$: Contact pressure (MPa)

$R$: Action radius (mm)

$N$: Number of contact points

$\eta$: Efficiency coefficient (0.85-0.95)

 

2.3 Deviation Compensation Principle

The coupling achieves the following compensation capabilities through relative movement of the intermediate slider in the grooves:

Radial compensation: ±0.5-3mm

Angular compensation: ±1-3°

Axial float: ±0.5-2mm

 

3. Performance Comparative Analysis

3.1 Torque Transmission Characteristics

Experimental test data:

Clamp Type Fixation:

Torque transmission efficiency: 95-98%

Maximum torque capacity: 50% higher than rated value

Torsional stiffness: 150-200 Nm/deg

Backlash: <0.1°

 

Set Screw Fixation:

Torque transmission efficiency: 80-85%

Maximum torque capacity: 20% higher than rated value

Torsional stiffness: 100-150 Nm/deg

Backlash: 0.2-0.5°

 

3.2 Stress Distribution Analysis

Finite element analysis results:

Clamp Type Fixation:

Stress distribution uniformity: >90%

Maximum stress location: Middle of clamping sleeve

Stress concentration factor: 1.2-1.5

Safety factor: 2.5-3.0

 

Set Screw Fixation:

Stress distribution uniformity: 60-70%

Maximum stress location: Screw contact area

Stress concentration factor: 2.5-3.5

Safety factor: 1.5-2.0

 

3.3 Fatigue Performance Study

Accelerated life test results:

Clamp Type Fixation:

Service life: 10^7-10^8 cycles

Failure mode: Material fatigue

Temperature rise: ΔT<30°C

Wear rate: <0.01mm/1000h

 

Set Screw Fixation:

Service life: 10^6-10^7 cycles

Failure mode: Fretting wear

Temperature rise: ΔT<50°C

Wear rate: 0.05-0.1mm/1000h

 

4. Application Fields and Selection Guidelines

4.1 Applicable Scenarios for Clamp Type Fixation

High-torque applications (>500 Nm)

Rolling mill drives in metallurgical equipment

Hoisting systems in mining machinery

Marine propulsion systems

High-precision requirements

Feed systems of CNC machine tools

Robot joint transmissions

Precision measuring equipment

Harsh working conditions

High-temperature environments (-40°C to +150°C)

Corrosive environments

High-vibration occasions

 

4.2 Applicable Scenarios for Set Screw Fixation

Medium-torque applications (<500 Nm)

Conveyor equipment drives

Fan and pump connections

General industrial machinery

Economical projects

Cost-sensitive applications

Short-term use equipment

Backup equipment

Maintenance convenience requirements

Occasions requiring frequent disassembly

Limited field maintenance conditions

Emergency backup equipment

 

4.3 Selection Decision Model

Establish a selection decision matrix based on the following parameters:

Torque parameters

Rated torque

Peak torque

Torque fluctuation amplitude

Operating parameters

Operating speed

Ambient temperature

Pollution level

Reliability requirements

Design life

Maintenance cycle

Failure tolerance

 

5. Installation and Maintenance Specifications

5.1 Installation Requirements for Clamp Type Fixation

Shaft machining specifications

Diameter tolerance: h6 grade or higher

Surface roughness: Ra ≤ 0.8 μm

Hardness requirement: HRC30-35

Straightness: ≤0.01mm/m

Installation process

Bolt torque control: Use torque wrench, error ±3%

Tightening sequence: Use star-cross sequence

Step-by-step preload application: 50%→80%→100%

Final inspection: Measure radial runout <0.05mm

 

Surface treatment

Cleanliness requirement: ISO 4406 15/12/10

Anti-corrosion treatment: Apply special rust preventive

Contact check: Use blue oil to check contact area

 

5.2 Installation Requirements for Set Screw Fixation

Shaft machining requirements

Recommended to machine flat or dimple

Surface hardness: HRC35-40

Local strengthening treatment: Induction hardening

Surface integrity: No crack defects

Installation specifications

 

Screw preload control: Use torque-angle method

Anti-loosening measures: Use thread locking agent

Position accuracy: Multiple screws evenly distributed

Safety verification: Test anti-slip capability after installation

 

Maintenance requirements

Regular inspection cycle: 500 operating hours

Inspection content: Screw loosening, shaft surface wear

Maintenance records: Establish complete maintenance files

Spare parts management: Prepare special installation tools

 

6. Usage Precautions and Failure Prevention

6.1 Clamp Type Fixation

Overload protection

Install torque limiting device

Set overload alarm system

Regularly check preload status

Temperature management

Monitor operating temperature

Consider thermal expansion effects

Adopt temperature compensation design

 

Surface protection

Prevent installation damage

Regular anti-rust treatment

Avoid chemical corrosion

Reuse specifications

Maximum reuse times: 3 times

Check dimensions before each use

Record usage history

 

6.2 Set Screw Fixation

Strength considerations

Check shaft strength reduction

Consider fatigue strength reduction

Avoid stress concentration superposition

Wear protection

Regularly check wear condition

Use surface hardening treatment

Apply wear-resistant coating

Dynamic balance

Perform dynamic balancing at high speed

Control unbalance amount

Regularly check balance status

Anti-corrosion measures

Special protection for screw areas

Use anti-corrosion materials

Regularly check corrosion condition

 

7. Experimental Verification and Engineering Cases

7.1 Experimental Scheme Design

Establish a complete test platform:

Torque test system

Range: 0-2000Nm

Accuracy: ±0.5%

Sampling frequency: 10kHz

Temperature monitoring system

Infrared thermal imager

Embedded temperature sensors

Data recording system

Vibration analysis system

Triaxial accelerometers

Dynamic signal analyzer

Fault diagnosis software

 

7.2 Experimental Results Analysis

Performance comparison data:

Torque transmission efficiency

Clamp type: 96.5%

Set screw type: 82.3%

Temperature rise characteristics

Clamp type: ΔT=28°C

Set screw type: ΔT=47°C

Life test

Clamp type: 1.2×10^7 cycles

Set screw type: 3.5×10^6 cycles

 

7.3 Engineering Application Cases

Case 1: Steel plant rolling mill transmission system

Equipment: Hot continuous rolling mill finishing train

Torque: 850Nm

Speed: 500rpm

Selection: Clamp type fixation

Result: 18 months continuous operation without failure

 

Case 2: Food packaging machinery

Equipment: High-speed packaging machine

Torque: 120Nm

Speed: 1500rpm

Selection: Set screw fixation

Result: Met usage requirements, cost reduced by 40%

 

8. Conclusion and Outlook

8.1 Research Conclusions

Performance advantages

 

Clamp type shows significant advantages in torque transmission and fatigue life

Set screw type is more competitive in cost-effectiveness

 

Application fields

Clamp type suitable for high-demand industrial scenarios

Set screw type suitable for medium-load applications

 

Technical indicators

Clamp type reduces stress concentration coefficient by 60%

Service life increased by 3-5 times

Maintenance cycle extended by 2-3 times

 

8.2 Technical Outlook

Intelligent development

Integrated sensor technology

Real-time condition monitoring

Predictive maintenance systems

 

Material innovation

Application of new composite materials

Surface engineering technology

Self-repairing material research

 

Design optimization

Multi-objective optimization design

Personalized customization solutions

Digital simulation platform

Standardization process

Improve technical standard system

Unified performance test specifications

Establish reliability database

 

This study provides complete technical guidance for the selection and application of high-torque Oldham couplings through systematic theoretical analysis and experimental verification. Future research will continue to deeply research intelligent monitoring and predictive maintenance technologies, promoting the development of coupling technology toward higher efficiency, greater reliability, and smarter direction.


Guangzhou Link Automation Equipment Co.,Ltd All Rights Reserved.
Follow us : 
国产在线精品网址你懂的,欧洲成人全免费视频网站,中文字幕日产无码,亚洲国产精品久久久久婷婷软件
  • <rt id="u4ag4"><acronym id="u4ag4"></acronym></rt>
    <rt id="u4ag4"></rt>
  • <li id="u4ag4"><input id="u4ag4"></input></li>
  • <rt id="u4ag4"></rt>
    日韩片之四级片| 成人黄动漫网站免费app| va亚洲va日韩不卡在线观看| 国产欧美一区二区在线| 99re视频精品| 亚洲va在线va天堂| 日韩欧美在线1卡| 国产成人精品网址| 亚洲精品大片www| 日韩一区和二区| 成人小视频在线观看| 亚洲一区二区三区四区五区黄| 欧美一区二区三区四区视频| 东方aⅴ免费观看久久av| 亚洲另类在线一区| 欧美午夜不卡视频| 国产精品综合视频| 夜夜嗨av一区二区三区网页| 日韩午夜中文字幕| 成人av手机在线观看| 亚洲一二三级电影| 亚洲精品在线观| 91久久国产最好的精华液| 精品亚洲aⅴ乱码一区二区三区| 中文字幕在线一区二区三区| 制服丝袜成人动漫| www.日韩在线| 日韩激情一二三区| 中文字幕一区二区三区在线观看| 欧美视频日韩视频在线观看| 国产一区二区91| 亚洲综合在线观看视频| 欧美成人一区二区| 在线视频欧美精品| 国产a级毛片一区| 蜜臀久久99精品久久久画质超高清| 一区精品在线播放| 精品av久久707| 欧美日韩免费一区二区三区视频| 岛国av在线一区| 捆绑变态av一区二区三区| 日韩中文字幕不卡| 亚洲乱码中文字幕| 国产欧美日韩精品a在线观看| 91精品国产色综合久久ai换脸| 99久久精品久久久久久清纯| 国产乱淫av一区二区三区| 亚洲bt欧美bt精品777| 亚洲日本一区二区三区| 亚洲国产精品v| 久久久久国色av免费看影院| 日韩丝袜情趣美女图片| 欧美日韩国产123区| 色偷偷成人一区二区三区91| 成人黄色大片在线观看| 国产不卡在线播放| 国产一区二区三区四| 卡一卡二国产精品| 日本美女一区二区三区视频| 性感美女久久精品| 亚洲国产视频直播| 亚洲自拍都市欧美小说| 亚洲精品国产视频| 亚洲欧美日韩国产成人精品影院 | 国产在线精品一区二区三区不卡| 香蕉久久一区二区不卡无毒影院 | 日本一区二区三区高清不卡| 欧美精品一区二区在线播放| 欧美xxxx老人做受| 精品国产髙清在线看国产毛片| 7777精品伊人久久久大香线蕉最新版| 91福利视频久久久久| 色综合一区二区| 一本大道久久a久久综合| 99re6这里只有精品视频在线观看| 床上的激情91.| 成人av在线一区二区| 成人av在线资源网站| av一本久道久久综合久久鬼色| 成人精品电影在线观看| aaa亚洲精品一二三区| 99久久婷婷国产综合精品| 成人精品小蝌蚪| 色综合天天综合狠狠| 日本韩国一区二区三区视频| 久久久久国产精品麻豆 | 555夜色666亚洲国产免| 91麻豆精品国产91久久久久| 欧美大度的电影原声| www久久久久| 中文字幕乱码日本亚洲一区二区| 中文字幕亚洲精品在线观看| 亚洲一区二区三区美女| 日本v片在线高清不卡在线观看| 久久99精品久久久久婷婷| 国产一区二区三区不卡在线观看 | 欧美国产禁国产网站cc| 18欧美乱大交hd1984| 亚洲国产中文字幕在线视频综合| 婷婷综合在线观看| 国产综合成人久久大片91| zzijzzij亚洲日本少妇熟睡| 91久久精品一区二区二区| 91精品免费在线观看| 国产午夜亚洲精品午夜鲁丝片| 国产精品成人一区二区三区夜夜夜 | 成人一级视频在线观看| 91视频.com| 91精品国产综合久久久蜜臀粉嫩| 精品粉嫩aⅴ一区二区三区四区| 国产精品免费视频网站| 亚洲国产成人av网| 国产在线视频一区二区三区| www.性欧美| 欧美一区二区精品在线| 日韩一区日韩二区| 日韩av一区二区在线影视| 国产成a人亚洲| 欧美男男青年gay1069videost | 成人免费电影视频| 欧美喷水一区二区| 中文在线一区二区| 日韩高清不卡一区二区三区| 大尺度一区二区| 91精品婷婷国产综合久久性色| 国产精品久久久久久久久图文区 | 日韩精品一区二区在线| 国产精品毛片高清在线完整版| 日韩精品五月天| av不卡一区二区三区| 欧美xxxx老人做受| 亚洲超碰97人人做人人爱| 丰满亚洲少妇av| 日韩欧美美女一区二区三区| 亚洲色图色小说| 国产精品一区二区三区四区 | 日韩视频一区二区在线观看| 亚洲欧洲制服丝袜| 国产精品18久久久久久久久| 欧美少妇xxx| 国产精品丝袜在线| 激情久久五月天| 精品视频在线视频| 国产精品久久久久久户外露出| 久久精品国产亚洲高清剧情介绍| 日本大香伊一区二区三区| 久久精品人人做人人爽97 | 一区二区三区欧美久久| 成人av在线影院| 久久综合av免费| 日本美女一区二区| 欧美精品在线一区二区三区| 亚洲日韩欧美一区二区在线| 粉嫩av一区二区三区| 精品国产免费人成在线观看| www.在线欧美| 中文字幕欧美国产| 国产一区二区三区免费观看| 欧美成人性战久久| 美女久久久精品| 日韩视频中午一区| 天天影视网天天综合色在线播放| 欧美怡红院视频| 亚洲精品成人a在线观看| 不卡一卡二卡三乱码免费网站| 久久久www成人免费毛片麻豆| 久久成人免费电影| 欧美一卡二卡在线| 五月激情六月综合| 欧美老女人第四色| 性做久久久久久免费观看 | 亚洲亚洲人成综合网络| 欧美性xxxxxx少妇| 午夜影视日本亚洲欧洲精品| 日本韩国欧美在线| 伊人色综合久久天天人手人婷| 色综合一区二区| 一区二区三区在线观看视频| 欧日韩精品视频| 亚洲国产日韩a在线播放性色| 在线免费观看不卡av| 亚洲成av人片在线观看无码| 欧美日韩成人综合在线一区二区| 日韩avvvv在线播放| 日韩精品一区二区在线观看| 看电视剧不卡顿的网站| 久久久三级国产网站| 国产+成+人+亚洲欧洲自线| 中文字幕一区二区三区不卡| 91蜜桃免费观看视频| 亚洲影院理伦片| 欧美高清hd18日本| 精品一区免费av| 国产精品久久免费看| 欧美色图第一页| 蜜臀av性久久久久蜜臀aⅴ| 久久综合一区二区| 99在线热播精品免费| 亚洲第一精品在线| 精品国产免费久久|