国产在线精品网址你懂的,欧洲成人全免费视频网站,中文字幕日产无码,亚洲国产精品久久久久婷婷软件

EN CN
close
Diagnostic methods for misalignment in rotating equipment couplings
Release date:10 14,2025      Views:

Couplings can be categorized into various types, each exhibiting different characteristics when misaligned. For instance, rigid couplings demonstrate a rotor bending effect, leading to vibration at the line frequency; claw couplings may exhibit vibrations at frequencies corresponding to the number of claws; and gear couplings might display gear meshing frequencies, among other symptoms. 

 

In field applications, misalignment in diaphragm couplings and flexible elastomer couplings typically manifests as vibrations at 1x and 2x rotational frequencies. In some cases, the 2x rotational frequency may be predominant, while in others, the 1x rotational frequency dominates significantly. This depends on the form of misalignment and the measurement location. 

 

Understanding the type of coupling is essential, as is familiarity with the equipment structure. Different equipment configurations exhibit distinct vibration behaviors under misalignment conditions. For instance, in sleeve bearings, the larger clearance may compensate for misalignment, often preventing noticeable vibration. However, this does not negate the potential for bushing wear, which may eventually manifest through other vibration patterns. Ultimately, the root cause may still be coupling misalignment. 

 

The following section outlines diagnostic approaches specifically for misalignment in diaphragm and flexible elastomer couplings.

5bb56d7c-50c9-45e6-af9a-1c96f466e45c.png


I. Visual Inspection and Testing

 

1. Both types of couplings exhibit strong vibration compensation capabilities. Within certain misalignment tolerances, vibrations may not be prominently observable. However, symptoms such as diaphragm deformation or fracture in diaphragm couplings, or wear in elastomer couplings, may occur. In severe cases, debris from elastomer components may be found on the ground. If any of these signs are detected, realignment should be performed—regardless of whether misalignment is the root cause of the vibration. 

 

2. Misalignment can arise from multiple factors, one of which is structural loosening. Loose foundation bolts typically induce 1x rotational frequency vibration. However, if the loosening severity affects alignment, 2x rotational frequency vibration may emerge. Any looseness should be corrected first. 

 

3. According to Newton’s third law, every force has an equal and opposite reaction. Thus, bearings on both sides of the coupling tend to show the most significant vibration responses under misalignment. Due to potential stiffness disparities between the two sides, the bearing on the less rigid side often exhibits noticeably higher vibration amplitudes, while the stiffer side may show minimal vibration. 

 

4. In large units equipped with sleeve bearings, radial misalignment often leads to lower oil film pressure and temperature in the bearing at a lower position (with a elevated journal), compared to the bearing at a higher position (with a lowered journal). 

 

5. For machinery with rolling element bearings, if significantly high vertical vibration is observed only on the bearing housing adjacent to the coupling—and provided that foundation or connection looseness has been ruled out—angular misalignment (vertical offset) of the coupling should be considered. 

 

6. Thermally induced misalignment often manifests as follows: vibration levels are acceptable upon startup, gradually increase during operation, and eventually stabilize at a higher value. The amplitude of vibration depends on the degree of misalignment caused by thermal expansion.

 

II. Vibration Spectrum and Time-Domain Waveform

In vibration diagnostics, spectrum analysis alone often presents uncertainty. A conclusive diagnosis should integrate observations across vibration location, direction, temperature, load, rotational speed, and other operational parameters. The following describes typical spectral and waveform patterns.

 

Misalignment-induced vibrations typically occur at 1x, 2x, and sometimes 3x rotational frequencies. Depending on the severity and type of misalignment, these frequency components may appear in various combinations.

 

Angular misalignment typically generates predominant 1x vibration.

Parallel offset misalignment mainly produces 2x vibration.

Combined misalignment may result in both 1x and 2x vibrations, and occasionally 3x components as well.

 

In time-domain waveforms, the relative phase between 1x and 2x vibrations determines the waveform shape, often exhibiting "M" shape (?180°) or "W" shape (0° or 180°) patterns. For spectral measurements, data should be collected in Horizontal (H), Vertical (V), and Axial (A) directions. Different misalignment types manifest distinct spectral characteristics across these directions.

Below are typical spectrum and waveform presentations for coupling misalignment:


1.Typical Spectrum for Pure Radial Misalignment

For pure radial misalignment, both 1x and 2x vibration amplitudes are relatively low in the axial direction.

image.png


2.Typical Spectrum for Axial Misalignment

The spectrum displays high 1x vibration amplitude with relatively lower 2x component.

image.png


3.Spectrum with Combined Radial and Axial Misalignment

image.png


4.Waveform with Phase Difference of –180° or 0°/180° Between 1x and 2x


image.png



5.Waveform with 90° Phase Difference Between 1x and 2x

image.png


III. Phase Analysis

The most effective method for diagnosing misalignment is phase analysis across the coupling. A phase difference close to 180° (±40°–50°) between both sides of the coupling strongly indicates misalignment. The severity of misalignment correlates with how closely the phase difference approaches 180°.

 

For accurate diagnosis, compare phase differences in horizontal, vertical, and axial directions on both sides of the coupling. If the shafts are well-aligned horizontally but misaligned vertically, a significant phase difference will be observed in the vertical direction.

 

In cases of coupling misalignment, the radial phase difference between the two bearings supporting the rotor on either side of the coupling tends to be near 0° or 180° (±30°).

 

When comparing horizontal and vertical phase differences, most misalignment cases exhibit a phase difference close to 180° between these two directions. This helps distinguish misalignment from unbalance faults.

 

Phase changes can also indicate real-time alignment variations. For rotors with thermal compensation, a transition from misalignment (at room temperature) to alignment (at operating temperature) may occur, reflected in a phase shift from ~180° to ~0° across the coupling.

 

Compare phases in the vertical, horizontal, and axial directions at each bearing. If the phases on both sides of the coupling are similar, alignment is good. A 180° phase difference radially with in-phase axially suggests parallel offset misalignment.

 

In most practical cases, misalignment is a combination of radial and axial deviations. Regardless of the measurement direction, a phase difference approaching 180° indicates a higher probability of misalignment.




Guangzhou Link Automation Equipment Co.,Ltd All Rights Reserved.
Follow us : 
国产在线精品网址你懂的,欧洲成人全免费视频网站,中文字幕日产无码,亚洲国产精品久久久久婷婷软件
  • <rt id="u4ag4"><acronym id="u4ag4"></acronym></rt>
    <rt id="u4ag4"></rt>
  • <li id="u4ag4"><input id="u4ag4"></input></li>
  • <rt id="u4ag4"></rt>
    欧美精品在线一区二区三区| 欧美性生活一区| 日韩免费高清电影| 色一区在线观看| 麻豆成人免费电影| 欧美日韩国产片| 波多野结衣在线一区| 日本美女一区二区三区| 国产喷白浆一区二区三区| 日韩片之四级片| 日韩一卡二卡三卡| 日韩一级欧美一级| 精品人伦一区二区色婷婷| 3atv一区二区三区| 色呦呦网站一区| 在线精品视频一区二区| 国产aⅴ综合色| 波多野洁衣一区| 在线影院国内精品| 欧美狂野另类xxxxoooo| 久久97超碰色| 18欧美亚洲精品| 国内国产精品久久| 激情国产一区二区| 97久久超碰国产精品电影| 欧美挠脚心视频网站| 精品人在线二区三区| 亚洲欧洲精品一区二区精品久久久 | 夜夜嗨av一区二区三区四季av| 亚洲欧洲国产日韩| 免费成人av在线| 欧美丝袜丝交足nylons图片| 日韩欧美不卡一区| 综合分类小说区另类春色亚洲小说欧美| 亚洲视频1区2区| 国产精品羞羞答答xxdd| 日韩一区二区三区在线| 中文字幕欧美一| 美女国产一区二区三区| 欧美日韩色一区| 亚洲美女屁股眼交3| 国产成人亚洲综合色影视| 69精品人人人人| 日韩中文字幕1| 色综合久久久久久久| 久久久美女艺术照精彩视频福利播放| 亚洲摸摸操操av| 色婷婷激情久久| 亚洲另类一区二区| 色视频成人在线观看免| 国产精品久久久久影院| 波多野结衣精品在线| 国产三级久久久| 国产成人综合在线| 国产欧美一二三区| 91在线播放网址| 丝袜亚洲精品中文字幕一区| 欧美高清性hdvideosex| 久久99精品久久久| 中文字幕欧美日本乱码一线二线| 不卡大黄网站免费看| 中文字幕综合网| 欧美一级日韩不卡播放免费| 国产主播一区二区| 亚洲视频一二区| 在线电影一区二区三区| 久久aⅴ国产欧美74aaa| 国产精品久久国产精麻豆99网站| 成人av在线网| 日本不卡视频一二三区| 国产欧美精品日韩区二区麻豆天美| 成人一区在线看| 青娱乐精品视频| 中文字幕欧美一区| 精品国产一二三| 欧美日韩精品电影| 97se亚洲国产综合自在线不卡| 亚洲激情六月丁香| 国产亚洲综合色| 欧美一区二区精美| 欧美性猛交xxxxxxxx| 国产精品一色哟哟哟| 老色鬼精品视频在线观看播放| 亚洲日本乱码在线观看| 欧美va亚洲va香蕉在线| 欧美人体做爰大胆视频| 国产精品乱人伦| 欧美日韩综合在线免费观看| av成人老司机| 91片黄在线观看| 色伊人久久综合中文字幕| 99久久精品情趣| 成人av手机在线观看| 欧美日韩国产a| 日韩精品一级二级 | 日韩成人精品视频| 国精产品一区一区三区mba视频 | 成人免费高清视频在线观看| 91视频在线观看| 日韩欧美视频一区| 综合激情成人伊人| 国产综合一区二区| 欧美三级三级三级| 久久久久高清精品| 一区二区三区在线看| 亚洲尤物在线视频观看| 日本不卡视频在线观看| 99天天综合性| 国产无一区二区| 免费成人在线视频观看| a级精品国产片在线观看| 日韩精品一区国产麻豆| 亚洲激情在线激情| 国产成人午夜99999| 91精品国产综合久久精品图片| 国产日韩欧美在线一区| 久久机这里只有精品| 欧美综合一区二区| 亚洲免费观看高清完整版在线观看 | 亚洲一区二区精品3399| 韩国欧美国产1区| 日韩三级免费观看| 人人超碰91尤物精品国产| 欧美午夜理伦三级在线观看| 久久亚洲一区二区三区明星换脸 | 中文字幕免费在线观看视频一区| 同产精品九九九| 欧美一区二区精品久久911| 偷拍与自拍一区| 91精品国产综合久久久蜜臀图片| 亚洲一区二区免费视频| 欧美日韩高清一区| 丝袜脚交一区二区| 91精品在线麻豆| 久久99九九99精品| 久久综合一区二区| 国产成人亚洲精品青草天美| 久久精品一二三| 色婷婷av一区| 香蕉成人伊视频在线观看| 欧美一级搡bbbb搡bbbb| 精品影院一区二区久久久| 国产三级精品三级在线专区| 欧洲在线/亚洲| 日韩国产欧美在线视频| 日韩亚洲电影在线| 国产成人免费视频网站高清观看视频| 中文字幕不卡一区| 欧美亚洲国产一区在线观看网站 | 奇米影视一区二区三区小说| 国产午夜精品一区二区三区嫩草| 在线影院国内精品| 国产成人a级片| 麻豆传媒一区二区三区| 亚洲欧美激情一区二区| 日韩美女在线视频| 精品无人码麻豆乱码1区2区| 夜夜嗨av一区二区三区| 久久久综合精品| 欧美精品丝袜中出| 在线观看日韩一区| 色狠狠综合天天综合综合| 国产·精品毛片| 粉嫩高潮美女一区二区三区| 国内精品久久久久影院薰衣草| 午夜精品福利久久久| 午夜影院久久久| 亚洲超丰满肉感bbw| 一区二区三区不卡视频在线观看| 中文字幕日本不卡| 国产精品久久久久久久久免费丝袜| 日韩亚洲欧美在线观看| 久久综合五月天婷婷伊人| 国产亚洲欧美日韩在线一区| 精品福利一区二区三区 | 中文字幕亚洲区| 中文字幕综合网| 视频在线观看一区二区三区| 亚洲国产一区二区三区| 日韩电影免费一区| 高清国产一区二区| 欧美日韩在线观看一区二区 | 色噜噜狠狠一区二区三区果冻| 色哟哟国产精品免费观看| 欧美精品久久天天躁| 久久嫩草精品久久久精品一| 亚洲色图制服诱惑| 久久精品国产精品亚洲精品| 懂色av一区二区夜夜嗨| 欧美精品tushy高清| 久久精品视频网| 五月天一区二区三区| 99视频在线精品| 久久在线观看免费| 五月天亚洲精品| 色综合久久久久综合体| 久久精品亚洲乱码伦伦中文| 日韩av电影免费观看高清完整版 | 中文字幕精品一区二区精品绿巨人| 亚洲午夜三级在线|